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CHAPTER

ONE

PYBNESIAN

• PyBNesian is a Python package that implements Bayesian networks. Currently, it is mainly dedicated to learning
Bayesian networks.

• PyBNesian is implemented in C++, to achieve significant performance gains. It uses Apache Arrow to enable
fast interoperability between Python and C++. In addition, some parts are implemented in OpenCL to achieve
GPU acceleration.

• PyBNesian allows extending its functionality using Python code, so new research can be easily developed.

1.1 Dependencies

• Python 3.6, 3.7, 3.8 and 3.9.

The library has been tested on Ubuntu 16.04/20.04 and Windows 10, but should be compatible with other operating
systems.

1.1.1 Libraries

The library depends on NumPy, Apache Arrow, and pybind11.

Building PyBNesian requires linking to Apache Arrow. Therefore, even though the library is compatible with
pyarrow>=3.0 each compiled binary is compatible with a specific pyarrow version. The pip repository provides
compiled binaries for all the major operating systems (Linux, Windows, Mac OS X) targeting the last pyarrow ver-
sion.

If you need a different version of pyarrow you will have to build PyBNesian from source. For example, if you need to
use a pyarrow==3.0 with PyBNesian, first install the required version of pyarrow:

pip install pyarrow==3.0.0

Then, proceed with the Building steps.
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1.2 Installation

PyBNesian can be installed with pip:

pip install pybnesian

1.3 Build from Source

1.3.1 Prerequisites

• Python 3.6, 3.7, 3.8 or 3.9.

• C++17 compatible compiler.

• OpenCL 1.2 headers/library available.

If needed you can select a C++ compiler by setting the environment variable CC. For example, in Ubuntu, we can use
Clang 11 with the following command before installing PyBNesian:

export CC=clang-11

1.3.2 Building

Clone the repository:

git clone https://github.com/davenza/PyBNesian.git
cd PyBNesian
git checkout v0.1.0 # You can checkout a specific version if you want
python setup.py install

1.4 Testing

The library contains tests that can be executed using pytest. They also require scipy and pandas installed. Install them
using pip:

pip install pytest scipy pandas

Run the tests with:

pytest

2 Chapter 1. PyBNesian
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1.5 Usage Example

>>> from pybnesian.models import GaussianNetwork
>>> from pybnesian.factors.continuous import LinearGaussianCPD
>>> # Create a GaussianNetwork with 4 nodes and no arcs.
>>> gbn = GaussianNetwork(['a', 'b', 'c', 'd'])
>>> # Create a GaussianNetwork with 4 nodes and 3 arcs.
>>> gbn = GaussianNetwork(['a', 'b', 'c', 'd'], [('a', 'c'), ('b', 'c'), ('c', 'd')])

>>> # Return the nodes of the network.
>>> print("Nodes: " + str(gbn.nodes()))
Nodes: ['a', 'b', 'c', 'd']
>>> # Return the arcs of the network.
>>> print("Arcs: " + str(gbn.nodes()))
Arcs: ['a', 'b', 'c', 'd']
>>> # Return the parents of c.
>>> print("Parents of c: " + str(gbn.parents('c')))
Parents of c: ['b', 'a']
>>> # Return the children of c.
>>> print("Children of c: " + str(gbn.children('c')))
Children of c: ['d']

>>> # You can access to the graph of the network.
>>> graph = gbn.graph()
>>> # Return the roots of the graph.
>>> print("Roots: " + str(sorted(graph.roots())))
Roots: ['a', 'b']
>>> # Return the leaves of the graph.
>>> print("Leaves: " + str(sorted(graph.leaves())))
Leaves: ['d']
>>> # Return the topological sort.
>>> print("Topological sort: " + str(graph.topological_sort()))
Topological sort: ['a', 'b', 'c', 'd']

>>> # Add an arc.
>>> gbn.add_arc('a', 'b')
>>> # Flip (reverse) an arc.
>>> gbn.flip_arc('a', 'b')
>>> # Remove an arc.
>>> gbn.remove_arc('b', 'a')

>>> # We can also add nodes.
>>> gbn.add_node('e')
4
>>> # We can get the number of nodes
>>> assert gbn.num_nodes() == 5
>>> # ... and the number of arcs
>>> assert gbn.num_arcs() == 3
>>> # Remove a node.
>>> gbn.remove_node('b')

>>> # Each node has an unique index to identify it
(continues on next page)
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(continued from previous page)

>>> print("Indices: " + str(gbn.indices()))
Indices: {'e': 4, 'c': 2, 'd': 3, 'a': 0}
>>> idx_a = gbn.index('a')

>>> # And we can get the node name from the index
>>> print("Node 2: " + str(gbn.name(2)))
Node 2: c

>>> # The model is not fitted right now.
>>> assert gbn.fitted() == False

>>> # Create a LinearGaussianCPD (variable, parents, betas, variance)
>>> d_cpd = LinearGaussianCPD("d", ["c"], [3, 1.2], 0.5)

>>> # Add the CPD to the GaussianNetwork
>>> gbn.add_cpds([d_cpd])

>>> # The CPD is still not fitted because there are 3 nodes without CPD.
>>> assert gbn.fitted() == False

>>> # Let's generate some random data to fit the model.
>>> import numpy as np
>>> np.random.seed(1)
>>> import pandas as pd
>>> DATA_SIZE = 100
>>> a_array = np.random.normal(3, np.sqrt(0.5), size=DATA_SIZE)
>>> c_array = -4.2 - 1.2*a_array + np.random.normal(0, np.sqrt(0.75), size=DATA_SIZE)
>>> d_array = 3 + 1.2 * c_array + np.random.normal(0, np.sqrt(0.5), size=DATA_SIZE)
>>> e_array = np.random.normal(0, 1, size=DATA_SIZE)
>>> df = pd.DataFrame({'a': a_array,
... 'c': c_array,
... 'd': d_array,
... 'e': e_array
... })

>>> # Fit the model. You can pass a pandas.DataFrame or a pyarrow.RecordBatch as␣
→˓argument.
>>> # This fits the remaining CPDs
>>> gbn.fit(df)
>>> assert gbn.fitted() == True

>>> # Check the learned CPDs.
>>> print(gbn.cpd('a'))
[LinearGaussianCPD] P(a) = N(3.043, 0.396)
>>> print(gbn.cpd('c'))
[LinearGaussianCPD] P(c | a) = N(-4.423 + -1.083*a, 0.659)
>>> print(gbn.cpd('d'))
[LinearGaussianCPD] P(d | c) = N(3.000 + 1.200*c, 0.500)
>>> print(gbn.cpd('e'))
[LinearGaussianCPD] P(e) = N(-0.020, 1.144)

>>> # You can sample some data
(continues on next page)
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(continued from previous page)

>>> sample = gbn.sample(50)

>>> # Compute the log-likelihood of each instance
>>> ll = gbn.logl(sample)
>>> # or the sum of log-likelihoods.
>>> sll = gbn.slogl(sample)
>>> assert np.isclose(ll.sum(), sll)

>>> # Save the model, include the CPDs in the file.
>>> gbn.save('test', include_cpd=True)

>>> # Load the model
>>> from pybnesian import load
>>> loaded_gbn = load('test.pickle')

>>> # Learn the structure using greedy hill-climbing.
>>> from pybnesian.learning.algorithms import hc
>>> from pybnesian.models import GaussianNetworkType
>>> # Learn a Gaussian network.
>>> learned = hc(df, bn_type=GaussianNetworkType())
>>> learned.num_arcs()
2
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CHAPTER

TWO

EXTENDING PYBNESIAN FROM PYTHON

PyBNesian is completely implemented in C++ for better performance. However, some functionality might not be yet
implemented.

PyBNesian allows extending its functionality easily using Python code. This extension code can interact smoothly with
the C++ implementation, so that we can reuse most of the current implemented models or algorithms. Also, C++ code
is usually much faster than Python, so reusing the implementation also provides performance improvements.

Almost all components of the library can be extended:

• Factors: to include new conditional probability distributions.

• Models: to include new types of Bayesian network models.

• Independence tests: to include new conditional independence tests.

• Learning scores: to include new learning scores.

• Learning operators: to include new operators.

• Learning callbacks: callback function on each iteration of GreedyHillClimbing.

The extended functionality can be used exactly equal to the base functionality.

Note: You should avoid re-implementing the base functionality using extensions. Extension code is usually worse in
performance for two reasons:

• Usually, the Python code is slower than C++ (unless you have a really good implementation!).

• Crossing the Python<->C++ boundary has a performance cost. Reducing the transition between languages is
always good for performance

For all the extensible components, the strategy is always to implement an abstract class.

Warning: All the classes that need to be inherited are developed in C++. For this reason, in the constructor of the
new classes it is always necessary to explicitly call the constructor of the parent class. This should be the first line
of the constructor.

For example, when inheriting from FactorType, DO NOT DO this:

class NewFactorType(FactorType):
def __init__(self):

# Some code in the constructor

The following code is correct:

7
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class NewFactorType(FactorType):
def __init__(self):

FactorType.__init__(self)
# Some code in the constructor

Check the constructor details of the abstract classes in the API Reference to make sure you call the parent constructor
with the correct parameters.

If you have forgotten to call the parent constructor, the following error message will be displayed when creating a
new object (for pybind11>=2.6):

>>> t = NewFactorType()
TypeError: pybnesian.factors.FactorType.__init__() must be called when overriding __
→˓init__

2.1 Factor Extension

Implementing a new factor usually involves creating two new classes that inherit from FactorType and Factor.
A FactorType is the representation of a Factor type. A Factor is an specific instance of a factor (a conditional
probability distribution for a given variable and evidence).

These two classes are usually related: a FactorType can create instances of Factor (with FactorType.
new_factor()), and a Factor returns its corresponding FactorType (with Factor.type()).

A new FactorType need to implement the following methods:

• FactorType.__str__().

• FactorType.new_factor().

A new Factor need to implement the following methods:

• Factor.__str__().

• Factor.type().

• Factor.fitted().

• Factor.fit(). This method is needed for BayesianNetwork.fit() or DynamicBayesianNetwork.fit().

• Factor.logl(). This method is needed for BayesianNetwork.logl() or DynamicBayesianNetwork.
logl().

• Factor.slogl(). This method is needed for BayesianNetwork.slogl() or DynamicBayesianNetwork.
slogl().

• Factor.sample(). This method is needed for BayesianNetwork.sample() or
DynamicBayesianNetwork.sample().

• Factor.data_type(). This method is needed for DynamicBayesianNetwork.sample().

You can avoid implementing some of these methods if you do not need them. If a method is needed for a functionality
but it is not implemented, an error message is shown when trying to execute that functionality:

Tried to call pure virtual function Class::method

To illustrate, we will create an alternative implementation of a linear Gaussian CPD.

8 Chapter 2. Extending PyBNesian from Python
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import numpy as np
from scipy.stats import norm
import pyarrow as pa
from pybnesian.factors import FactorType, Factor
from pybnesian.factors.continuous import CKDEType

# Define our Factor type
class MyLGType(FactorType):

def __init__(self):
# IMPORTANT: Always call the parent class to initialize the C++ object.
FactorType.__init__(self)

# The __str__ is also used in __repr__ by default.
def __str__(self):

return "MyLGType"

# Create the factor instance defined below.
def new_factor(self, model, variable, evidence):

return MyLG(variable, evidence)

class MyLG(Factor):
def __init__(self, variable, evidence):

# IMPORTANT: Always call the parent class to initialize the C++ object.
# The variable and evidence are accessible through self.variable() and self.

→˓evidence().
Factor.__init__(self, variable, evidence)
self._fitted = False
self.beta = np.empty((1 + len(evidence),))
self.variance = -1

def __str__(self):
if self._fitted:

return "MyLG(beta: " + str(self.beta) + ", variance: " + str(self.variance)␣
→˓+ ")"

else:
return "MyLG(unfitted)"

def data_type(self):
return pa.float64()

def fit(self, df):
pandas_df = df.to_pandas()

# Run least squares to train the linear regression
restricted_df = pandas_df.loc[:, [self.variable()] + self.evidence()].dropna()
numpy_variable = restricted_df.loc[:, self.variable()].to_numpy()
numpy_evidence = restricted_df.loc[:, self.evidence()].to_numpy()
linregress_data = np.column_stack((np.ones(numpy_evidence.shape[0]), numpy_

→˓evidence))
(self.beta, res, _, _) = np.linalg.lstsq(linregress_data, numpy_variable,␣

→˓rcond=None)
self.variance = res[0] / (linregress_data.shape[0] - 1)
# Model fitted

(continues on next page)
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(continued from previous page)

self._fitted = True

def fitted(self):
return self._fitted

def logl(self, df):
pandas_df = df.to_pandas()

expected_means = self.beta[0] + np.sum(self.beta[1:] * pandas_df.loc[:,self.
→˓evidence()], axis=1)

return norm.logpdf(pandas_df.loc[:,self.variable()], expected_means, np.
→˓sqrt(self.variance))

def sample(self, n, evidence, seed):
pandas_df = df.to_pandas()

expected_means = self.beta[0] + np.sum(self.beta[1:] * pandas_df.loc[:,self.
→˓evidence()], axis=1)

return np.random.normal(expected_means, np.sqrt(self.variance))

def slogl(self, df):
return self.logl(df).sum()

def type(self):
return MyLGType()

2.1.1 Serialization

All the factors can be saved using pickle with the method Factor.save(). The class Factor already provides a
__getstate__ and __setstate__ implementation that saves the base information (variable name and evidence vari-
able names). If you need to save more data in your class, there are two alternatives:

• Implement the methods Factor.__getstate_extra__() and Factor.__setstate_extra__(). These
methods have the the same restrictions as the __getstate__ and __setstate__ methods (the returned ob-
jects must be pickleable).

• Re-implement the Factor.__getstate__() and Factor.__setstate__()methods. Note, however, that it is
needed to call the parent class constructor explicitly in Factor.__setstate__() (as in warning constructor).
This is needed to initialize the C++ part of the object. Also, you will need to add yourself the base information.

For example, if we want to implement serialization support for our re-implementation of linear Gaussian CPD, we can
add the following code:

class MyLG(Factor):
#
# Previous code
#

def __getstate_extra__(self):
return {'fitted': self._fitted,

'beta': self.beta,
'variance': self.variance}

(continues on next page)
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(continued from previous page)

def __setstate_extra__(self, extra):
self._fitted = extra['fitted']
self.beta = extra['beta']
self.variance = extra['variance']

Alternatively, the following code will also work correctly:

class MyLG(Factor):
#
# Previous code
#

def __getstate__(self):
# Make sure to include the variable and evidence.
return {'variable': self.variable(),

'evidence': self.evidence(),
'fitted': self._fitted,
'beta': self.beta,
'variance': self.variance}

def __setstate__(self, extra):
# Call the parent constructor always in __setstate__ !
Factor.__init__(self, extra['variable'], extra['evidence'])
self._fitted = extra['fitted']
self.beta = extra['beta']
self.variance = extra['variance']

2.1.2 Using Extended Factors

The extended factors can not be used in some specific networks: A GaussianNetwork only admits
LinearGaussianCPDType, a SemiparametricBN admits LinearGaussianCPDType or CKDEType, and so on. . .

If you try to use MyLG in a Gaussian network, a ValueError is raised.

>>> from pybnesian.models import GaussianNetwork
>>> g = GaussianNetwork(["a", "b", "c", "d"])
>>> g.set_node_type("a", MyLGType())
Traceback (most recent call last):
...
ValueError: Wrong factor type "MyLGType" for node "a" in Bayesian network type
→˓"GaussianNetworkType"

There are two alternatives to use an extended Factor:

• Create an extended model (see Model Extension) that admits the new extended Factor.

• Use a generic Bayesian network like HomogeneousBN and HeterogeneousBN.

The HomogeneousBN and HeterogeneousBN Bayesian networks admit any FactorType. The difference between
them is that HomogeneousBN is homogeneous (all the nodes have the same FactorType) and HeterogeneousBN is
heterogeneous (each node can have a different FactorType).

2.1. Factor Extension 11
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Our extended factor MyLG can be used with an HomogeneousBN to create and alternative implementation of a
GaussianNetwork:

>>> import pandas as pd
>>> from pybnesian.models import HomogeneousBN, GaussianNetwork
>>> # Create some multivariate normal sample data
>>> def generate_sample_data(size, seed=0):
... np.random.seed(seed)
... a_array = np.random.normal(3, 0.5, size=size)
... b_array = np.random.normal(2.5, 2, size=size)
... c_array = -4.2 + 1.2*a_array + 3.2*b_array + np.random.normal(0, 0.75, size=size)
... d_array = 1.5 - 0.3 * c_array + np.random.normal(0, 0.5, size=size)
... return pd.DataFrame({'a': a_array, 'b': b_array, 'c': c_array, 'd': d_array})
>>> df = generate_sample_data(300)
>>> df_test = generate_sample_data(20, seed=1)
>>> # Create an HomogeneousBN and fit it
>>> homo = HomogeneousBN(MyLGType(), ["a", "b", "c", "d"], [("a", "c")])
>>> homo.fit(df)
>>> # Create a GaussianNetwork and fit it
>>> gbn = GaussianNetwork(["a", "b", "c", "d"], [("a", "c")])
>>> gbn.fit(df)
>>> # Check parameters
>>> def check_parameters(cpd1, cpd2):
... assert np.all(np.isclose(cpd1.beta, cpd2.beta))
... assert np.isclose(cpd1.variance, cpd2.variance)
>>> # Check the parameters for all CPDs.
>>> check_parameters(homo.cpd("a"), gbn.cpd("a"))
>>> check_parameters(homo.cpd("b"), gbn.cpd("b"))
>>> check_parameters(homo.cpd("c"), gbn.cpd("c"))
>>> check_parameters(homo.cpd("d"), gbn.cpd("d"))
>>> # Check the log-likelihood.
>>> assert np.all(np.isclose(homo.logl(df_test), gbn.logl(df_test)))
>>> assert np.isclose(homo.slogl(df_test), gbn.slogl(df_test))

The extended factor can also be used in an heterogeneous Bayesian network. For example, we can imitate the behaviour
of a SemiparametricBN using an HeterogeneousBN:

>>> from pybnesian.models import HeterogeneousBN
>>> from pybnesian.factors.continuous import CKDEType
>>> from pybnesian.models import SemiparametricBN
>>> df = generate_sample_data(300)
>>> df_test = generate_sample_data(20, seed=1)
>>> # Create an heterogeneous with "MyLG" factors as default.
>>> het = HeterogeneousBN(MyLGType(), ["a", "b", "c", "d"], [("a", "c")])
>>> het.set_node_type("a", CKDEType())
>>> het.fit(df)
>>> # Create a SemiparametricBN
>>> spbn = SemiparametricBN(["a", "b", "c", "d"], [("a", "c")], [("a", CKDEType())])
>>> spbn.fit(df)
>>> # Check the parameters of the CPDs
>>> check_parameters(het.cpd("b"), spbn.cpd("b"))
>>> check_parameters(het.cpd("c"), spbn.cpd("c"))
>>> check_parameters(het.cpd("d"), spbn.cpd("d"))
>>> # Check the log-likelihood.

(continues on next page)
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(continued from previous page)

>>> assert np.all(np.isclose(het.logl(df_test), spbn.logl(df_test)))
>>> assert np.isclose(het.slogl(df_test), spbn.slogl(df_test))

The HeterogeneousBN can also be instantiated using a dict to specify different default factor types for different data
types. For example, we can mix the MyLG factor with DiscreteFactor for discrete data:

>>> import pyarrow as pa
>>> import pandas as pd
>>> from pybnesian.models import HeterogeneousBN
>>> from pybnesian.factors.continuous import CKDEType
>>> from pybnesian.factors.discrete import DiscreteFactorType
>>> from pybnesian.models import SemiparametricBN

>>> def generate_hybrid_sample_data(size, seed=0):
... np.random.seed(seed)
... a_array = np.random.normal(3, 0.5, size=size)
... b_categories = np.asarray(['b1', 'b2'])
... b_array = b_categories[np.random.choice(b_categories.size, size, p=[0.5, 0.5])]
... c_array = -4.2 + 1.2 * a_array + np.random.normal(0, 0.75, size=size)
... d_array = 1.5 - 0.3 * c_array + np.random.normal(0, 0.5, size=size)
... return pd.DataFrame({'a': a_array,
... 'b': pd.Series(b_array, dtype='category'),
... 'c': c_array,
... 'd': d_array})

>>> df = generate_hybrid_sample_data(20)
>>> # Create an heterogeneous with "MyLG" factors as default for continuous data and
>>> # "DiscreteFactorType" for categorical data.
>>> het = HeterogeneousBN({pa.float64(): MyLGType(),
... pa.float32(): MyLGType(),
... pa.dictionary(pa.int8(), pa.utf8()): DiscreteFactorType()},
... ["a", "b", "c", "d"],
... [("a", "c")])
>>> het.set_node_type("a", CKDEType())
>>> het.fit(df)
>>> assert het.node_type('a') == CKDEType()
>>> assert het.node_type('b') == DiscreteFactorType()
>>> assert het.node_type('c') == MyLGType()
>>> assert het.node_type('d') == MyLGType()

2.2 Model Extension

Implementing a new model Bayesian network model involves creating a class that inherits from
BayesianNetworkType. Optionally, you also might want to inherit from BayesianNetwork,
ConditionalBayesianNetwork and DynamicBayesianNetwork.

A BayesianNetworkType is the representation of a Bayesian network model. This is similar to the re-
lation between FactorType and a factor. The BayesianNetworkType defines the restrictions and proper-
ties that characterise a Bayesian network model. A BayesianNetworkType is used by all the variants of
Bayesian network models: BayesianNetwork, ConditionalBayesianNetwork and DynamicBayesianNetwork.
For this reason, the constructors BayesianNetwork.__init__(), ConditionalBayesianNetwork.__init__()

2.2. Model Extension 13
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DynamicBayesianNetwork.__init__() take the underlying BayesianNetworkType as parameter. Thus, once a
new BayesianNetworkType is implemented, you can use your new Bayesian model with the three variants automat-
ically.

Implementing a BayesianNetworkType requires to implement the following methods:

• BayesianNetworkType.__str__().

• BayesianNetworkType.is_homogeneous().

• BayesianNetworkType.default_node_type(). This method is optional. It is only needed for homogeneous
Bayesian networks.

• BayesianNetworkType.data_default_node_type(). This method is optional. It is only needed for non-
homogeneous Bayesian networks.

• BayesianNetworkType.compatible_node_type(). This method is optional. It is only needed for non-
homogeneous Bayesian networks. If not implemented, it accepts any FactorType for each node.

• BayesianNetworkType.can_have_arc(). This method is optional. If not implemented, it accepts any arc.

• BayesianNetworkType.new_bn().

• BayesianNetworkType.new_cbn().

• BayesianNetworkType.alternative_node_type(). This method is optional. This method is needed
to learn a Bayesian network structure with ChangeNodeTypeSet. This method is only needed for non-
homogeneous Bayesian networks.

To illustrate, we will create a Gaussian network that only admits arcs source -> target where source contains the
letter “a”. To make the example more interesting we will also use our custom implementation MyLG (in the previous
section).

from pybnesian.models import BayesianNetworkType

class MyRestrictedGaussianType(BayesianNetworkType):
def __init__(self):

# Remember to call the parent constructor.
BayesianNetworkType.__init__(self)

# The __str__ is also used in __repr__ by default.
def __str__(self):

return "MyRestrictedGaussianType"

def is_homogeneous(self):
return True

def default_node_type(self):
return MyLGType()

# NOT NEEDED because it is homogeneous. If heterogeneous we would return
# the default node type for the data_type.
# def data_default_node_type(self, data_type):
# if data_type.equals(pa.float64()) or data_type.equals(pa.float32()):
# return MyLGType()
# else:
# raise ValueError("Wrong data type for MyRestrictedGaussianType")
#
# NOT NEEDED because it is homogeneous. If heterogeneous we would check

(continues on next page)
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# that the node type is correct.
# def compatible_node_type(self, model, node):
# return self.node_type(node) == MyLGType or self.node_type(node) == ...

def can_have_arc(self, model, source, target):
# Our restriction for arcs.
return "a" in source.lower()

def new_bn(self, nodes):
return BayesianNetwork(MyRestrictedGaussianType(), nodes)

def new_cbn(self, nodes, interface_nodes):
return ConditionalBayesianNetwork(MyRestrictedGaussianType(), nodes, interface_

→˓nodes)

# NOT NEEDED because it is homogeneous. Also, it is not needed if you do not want to␣
→˓change the node type.
# def alternative_node_type(self, node):
# pass

The arc restrictions defined by BayesianNetworkType.can_have_arc() can be an alternative to the blacklist lists
in some learning algorithms. However, this arc restrictions are applied always:

>>> from pybnesian.models import BayesianNetwork
>>> g = BayesianNetwork(MyRestrictedGaussianType(), ["a", "b", "c", "d"])
>>> g.add_arc("a", "b") # This is OK
>>> g.add_arc("b", "c") # Not allowed
Traceback (most recent call last):
...
ValueError: Cannot add arc b -> c.
>>> g.add_arc("c", "a") # Also, not allowed
Traceback (most recent call last):
...
ValueError: Cannot add arc c -> a.
>>> g.flip_arc("a", "b") # Not allowed, because it would generate a b -> a arc.
Traceback (most recent call last):
...
ValueError: Cannot flip arc a -> b.

2.2.1 Creating Bayesian Network Types

BayesianNetworkType can adapt the behavior of a Bayesian network with a few lines of code. However,
you may want to create your own Bayesian network class instead of directly using a BayesianNetwork, a
ConditionalBayesianNetwork or a DynamicBayesianNetwork. This has some advantages:

• The source code can be better organized using a different class for each Bayesian network model.

• Using type(model) over different types of models would return a different type:

>>> from pybnesian.models import GaussianNetworkType, BayesianNetwork
>>> g1 = BayesianNetwork(GaussianNetworkType(), ["a", "b", "c", "d"])
>>> g2 = BayesianNetwork(MyRestrictedGaussianType(), ["a", "b", "c", "d"])

(continues on next page)
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>>> assert type(g1) == type(g2) # The class type is the same, but the code would be
>>> # more obvious if it weren't.
>>> assert g1.type() != g2.type() # You have to use this.

• It allows more customization of the Bayesian network behavior.

To create your own Bayesian network, you have to inherit from BayesianNetwork, ConditionalBayesianNetwork
or DynamicBayesianNetwork:

from pybnesian.models import BayesianNetwork, ConditionalBayesianNetwork,\
DynamicBayesianNetwork

class MyRestrictedBN(BayesianNetwork):
def __init__(self, nodes, arcs=None):

# You can initialize with any BayesianNetwork.__init__ constructor.
if arcs is None:

BayesianNetwork.__init__(self, MyRestrictedGaussianType(), nodes)
else:

BayesianNetwork.__init__(self, MyRestrictedGaussianType(), nodes, arcs)

class MyConditionalRestrictedBN(ConditionalBayesianNetwork):
def __init__(self, nodes, interface_nodes, arcs=None):

# You can initialize with any ConditionalBayesianNetwork.__init__ constructor.
if arcs is None:

ConditionalBayesianNetwork.__init__(self, MyRestrictedGaussianType(), nodes,
interface_nodes)

else:
ConditionalBayesianNetwork.__init__(self, MyRestrictedGaussianType(), nodes,

interface_nodes, arcs)

class MyDynamicRestrictedBN(DynamicBayesianNetwork):
def __init__(self, variables, markovian_order):

# You can initialize with any DynamicBayesianNetwork.__init__ constructor.
DynamicBayesianNetwork.__init__(self, MyRestrictedGaussianType(), variables,

markovian_order)

Also, it is recommended to change the BayesianNetworkType.new_bn() and BayesianNetworkType.new_cbn()
definitions:

class MyRestrictedGaussianType(BayesianNetworkType):
#
# Previous code
#

def new_bn(self, nodes):
return MyRestrictedBN(nodes)

def new_cbn(self, nodes, interface_nodes):
return MyConditionalRestrictedBN(nodes, interface_nodes)

Creating your own Bayesian network classes allows you to overload the base functionality. Thus, you can customize
completely the behavior of your Bayesian network. For example, we can print a message each time an arc is added:
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class MyRestrictedBN(BayesianNetwork):
#
# Previous code
#

def add_arc(self, source, target):
print("Adding arc " + source + " -> " + target)
# Call the base functionality
BayesianNetwork.add_arc(self, source, target)

>>> bn = MyRestrictedBN(["a", "b", "c", "d"])
>>> bn.add_arc("a", "c")
Adding arc a -> c
>>> assert bn.has_arc("a", "c")

Note: BayesianNetwork, ConditionalBayesianNetwork and DynamicBayesianNetwork are not ab-
stract classes. These classes provide an implementation for the abstract classes BayesianNetworkBase,
ConditionalBayesianNetworkBase or DynamicBayesianNetworkBase.

2.2.2 Serialization

The Bayesian network models can be saved using pickle with the BayesianNetworkBase.save() method. This
method saves the structure of the Bayesian network and, optionally, the factors within the Bayesian network. When
the BayesianNetworkBase.save() is called, BayesianNetworkBase.include_cpd property is first set and
then __getstate__() is called. __getstate__() saves the factors within the Bayesian network model only if
BayesianNetworkBase.include_cpd is True. The factors can be saved only if the Factor is also plickeable (see
Factor serialization).

As with factor serialization, an implementation of __getstate__() and __setstate__() is provided when inher-
iting from BayesianNetwork, ConditionalBayesianNetwork or DynamicBayesianNetwork. This implementa-
tion saves:

• The underlying graph of the Bayesian network.

• The underlying BayesianNetworkType.

• The list of FactorType for each node.

• The list of Factor within the Bayesian network (if BayesianNetworkBase.include_cpd is True).

In the case of DynamicBayesianNetwork, it saves the above list for both the static and transition networks.

If your extended Bayesian network class need to save more data, there are two alternatives:

• Implement the methods __getstate_extra__() and __setstate_extra__(). These methods have the the
same restrictions as the __getstate__() and __setstate__() methods (the returned objects must be pick-
leable).

class MyRestrictedBN(BayesianNetwork):
#
# Previous code
#

def __getstate_extra__(self):
(continues on next page)
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# Save some extra data.
return {'extra_data': self.extra_data}

def __setstate_extra__(self, d):
# Here, you can access the extra data. Initialize the attributes that you need
self.extra_data = d['extra_data']

• Re-implement the __getstate__() and __setstate__() methods. Note, however, that it is needed to call the
parent class constructor explicitly in the __setstate__() method (as in warning constructor). This is needed
to initialize the C++ part of the object. Also, you will need to add yourself the base information.

class MyRestrictedBN(BayesianNetwork):
#
# Previous code
#

def __getstate__(self):
d = {'graph': self.graph(),

'type': self.type(),
# You can omit this line if type is homogeneous
'factor_types': list(self.node_types().items()),
'extra_data': self.extra_data}

if self.include_cpd:
factors = []

for n in self.nodes():
if self.cpd(n) is not None:

factors.append(self.cpd(n))
d['factors'] = factors

return d

def __setstate__(self, d):
# Call the parent constructor always in __setstate__ !
BayesianNetwork.__init__(self, d['type'], d['graph'], d['factor_types'])

if "factors" in d:
self.add_cpds(d['factors'])

# Here, you can access the extra data.
self.extra_data = d['extra_data']

The same strategy is used to implement serialization in ConditionalBayesianNetwork and
DynamicBayesianNetwork.

Warning: Some functionalities require to make copies of Bayesian network models. Copying Bayesian network
models is currently implemented using this serialization suppport. Therefore, it is highly recommended to imple-
ment __getstate_extra__()/__setstate_extra__() or __getstate__()/__setstate__(). Otherwise,
the extra information defined in the extended classes would be lost.
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2.3 Independence Test Extension

Implementing a new conditional independence test involves creating a class that inherits from IndependenceTest.

A new IndependenceTest needs to implement the following methods:

• IndependenceTest.num_variables().

• IndependenceTest.variable_names().

• IndependenceTest.has_variables().

• IndependenceTest.name().

• IndependenceTest.pvalue().

To illustrate, we will implement a conditional independence test that has perfect information about the conditional
indepencences (an oracle independence test):

from pybnesian.learning.independences import IndependenceTest

class OracleTest(IndependenceTest):

# An Oracle class that represents the independences of this Bayesian network:
#
# "a" "b"
# \ /
# \ /
# \ /
# V
# "c"
# |
# |
# V
# "d"

def __init__(self):
# IMPORTANT: Always call the parent class to initialize the C++ object.
IndependenceTest.__init__(self)
self.variables = ["a", "b", "c", "d"]

def num_variables(self):
return len(self.variables)

def variable_names(self):
return self.variables

def has_variables(self, vars):
return set(vars).issubset(set(self.variables))

def name(self, index):
return self.variables[index]

def pvalue(self, x, y, z):
if z is None:

# a _|_ b
(continues on next page)
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if set([x, y]) == set(["a", "b"]):
return 1

else:
return 0

else:
z = list(z)
if "c" in z:

# a _|_ d | "c" in Z
if set([x, y]) == set(["a", "d"]):

return 1
# b _|_ d | "c" in Z
if set([x, y]) == set(["b", "d"]):

return 1
return 0

The oracle version of the PC algorithm guarantees the return of the correct network structure. We can use our new
oracle independence test with the PC algorithm.

>>> from pybnesian.learning.algorithms import PC
>>> pc = PC()
>>> oracle = OracleTest()
>>> graph = pc.estimate(oracle)
>>> assert set(graph.arcs()) == {('a', 'c'), ('b', 'c'), ('c', 'd')}
>>> assert graph.num_edges() == 0

To learn dynamic Bayesian networks your class has to override DynamicIndependenceTest. A new
DynamicIndependenceTest needs to implement the following methods:

• DynamicIndependenceTest.num_variables().

• DynamicIndependenceTest.variable_names().

• DynamicIndependenceTest.has_variables().

• DynamicIndependenceTest.name().

• DynamicIndependenceTest.markovian_order().

• DynamicIndependenceTest.static_tests().

• DynamicIndependenceTest.transition_tests().

Usually, your extended IndependenceTest will use data. It is easy to implement a related
DynamicIndependenceTest by taking a DynamicDataFrame as parameter and using the meth-
ods DynamicDataFrame.static_df() and DynamicDataFrame.transition_df() to implement
DynamicIndependenceTest.static_tests() and DynamicIndependenceTest.transition_tests()
respectively.
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2.4 Learning Scores Extension

Implementing a new learning score involves creating a class that inherits from Score or ValidatedScore. The score
must be decomposable.

The ValidatedScore is an Score that is evaluated in two different data sets: a training dataset and a validation dataset.

An extended Score class needs to implement the following methods:

• Score.has_variables().

• Score.compatible_bn().

• Score.score(). This method is optional. The default implementation sums the local score for all the nodes.

• Score.local_score(). Only the version with 3 arguments score.local_score(model, variable,
evidence) needs to be implemented. The version with 2 arguments can not be overriden.

• Score.local_score_node_type(). This method is optional. This method is only needed if the score is used
together with ChangeNodeTypeSet.

• Score.data(). This method is optional. It is needed to infer the default node types in the
GreedyHillClimbing algorithm.

In addition, an extended ValidatedScore class needs to implement the following methods to get the score in the
validation dataset:

• ValidatedScore.vscore(). This method is optional. The default implementation sums the validation local
score for all the nodes.

• ValidatedScore.vlocal_score(). Only the version with 3 arguments score.vlocal_score(model,
variable, evidence) needs to be implemented. The version with 2 arguments can not be overriden.

• ValidatedScore.vlocal_score_node_type(). This method is optional. This method is only needed if the
score is used together with ChangeNodeTypeSet.

To illustrate, we will implement an oracle score that only returns positive score to the arcs a -> c, b -> c and c -> d.

from pybnesian.learning.scores import Score

class OracleScore(Score):

# An oracle class that returns positive scores for the arcs in the
# following Bayesian network:
#
# "a" "b"
# \ /
# \ /
# \ /
# V
# "c"
# |
# |
# V
# "d"

def __init__(self):
Score.__init__(self)
self.variables = ["a", "b", "c", "d"]

(continues on next page)
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def has_variables(self, vars):
return set(vars).issubset(set(self.variables))

def compatible_bn(self, model):
return self.has_variables(model.nodes())

def local_score(self, model, variable, evidence):
if variable == "c":

v = -1
if "a" in evidence:

v += 1
if "b" in evidence:

v += 1.5
return v

elif variable == "d" and evidence == ["c"]:
return 1

else:
return -1

# NOT NEEDED because this score does not use data.
# In that case, this method can return None or you can avoid implementing this␣

→˓method.
def data(self):

return None

We can use this new score, for example, with a GreedyHillClimbing.

>>> from pybnesian.models import GaussianNetwork
>>> from pybnesian.learning.algorithms import GreedyHillClimbing
>>> from pybnesian.learning.operators import ArcOperatorSet
>>>
>>> hc = GreedyHillClimbing()
>>> start_model = GaussianNetwork(["a", "b", "c", "d"])
>>> learned_model = hc.estimate(ArcOperatorSet(), OracleScore(), start_model)
>>> assert set(learned_model.arcs()) == {('a', 'c'), ('b', 'c'), ('c', 'd')}

To learn dynamic Bayesian networks your class has to override DynamicScore. A new DynamicScore needs to
implement the following methods:

• DynamicScore.has_variables().

• DynamicScore.static_score().

• DynamicScore.transition_score().

Usually, your extended Score will use data. It is easy to implement a related DynamicScore by
taking a DynamicDataFrame as parameter and using the methods DynamicDataFrame.static_df() and
DynamicDataFrame.transition_df() to implement DynamicScore.static_score() and DynamicScore.
transition_score() respectively.
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2.5 Learning Operators Extension

Implementing a new learning score involves creating a class that inherits from Operator (or ArcOperator for oper-
ators related with a single arc). Next, a new OperatorSet must be defined to use the new learning operator within a
learning algorithm.

An extended Operator class needs to implement the following methods:

• Operator.__eq__(). This method is optional. This method is needed if the OperatorTabuSet is used (in the
GreedyHillClimbing it is used when the score is ValidatedScore).

• Operator.__hash__(). This method is optional. This method is needed if the OperatorTabuSet is used (in
the GreedyHillClimbing it is used when the score is ValidatedScore).

• Operator.__str__().

• Operator.apply().

• Operator.nodes_changed().

• Operator.opposite(). This method is optional. This method is needed if the OperatorTabuSet is used (in
the GreedyHillClimbing it is used when the score is ValidatedScore).

To illustrate, we will create a new AddArc operator.

from pybnesian.learning.operators import Operator, RemoveArc

class MyAddArc(Operator):

def __init__(self, source, target, delta):
# IMPORTANT: Always call the parent class to initialize the C++ object.
Operator.__init__(self, delta)
self.source = source
self.target = target

def __eq__(self, other):
return self.source == other.source and self.target == other.target

def __hash__(self):
return hash((self.source, self.target))

def __str__(self):
return "MyAddArc(" + self.source + " -> " + self.target + ")"

def apply(self, model):
model.add_arc(self.source, self.target)

def nodes_changed(self, model):
return [self.target]

def opposite():
return RemoveArc(self.source, self.target, -self.delta())

To use this new operator, we need to define a OperatorSet that returns this type of operators. An extended
OperatorSet class needs to implement the following methods:

• OperatorSet.cache_scores().
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• OperatorSet.find_max().

• OperatorSet.find_max_tabu(). This method is optional. This method is needed if the OperatorTabuSet
is used (in the GreedyHillClimbing it is used when the score is ValidatedScore).

• OperatorSet.set_arc_blacklist(). This method is optional. Implement it only if you need to check that
an arc is blacklisted.

• OperatorSet.set_arc_whitelist(). This method is optional. Implement it only if you need to check that
an arc is whitelisted.

• OperatorSet.set_max_indegree(). This method is optional. Implement it only if you need to check the
maximum indegree of the graph.

• OperatorSet.set_type_blacklist(). This method is optional. Implement it only if you need to check that
a node type is blacklisted.

• OperatorSet.set_type_whitelist(). This method is optional. Implement it only if you need to check that
a node type is whitelisted.

• OperatorSet.update_scores().

• OperatorSet.finished(). This method is optional. Implement it only if your class needs to clear the state.

To illustrate, we will create an operator set that only contains the MyAddArc operators. Therefore, this OperatorSet
can only add arcs.

from pybnesian.learning.operators import OperatorSet

class MyAddArcSet(OperatorSet):

def __init__(self):
# IMPORTANT: Always call the parent class to initialize the C++ object.
OperatorSet.__init__(self)
self.blacklist = set()
self.max_indegree = 0
# Contains a dict {(source, target) : delta} of operators.
self.set = {}

# Auxiliary method
def update_node(self, model, score, n):

lc = self.local_score_cache()

parents = model.parents(n)

# Remove the parent operators, they will be added next.
self.set = {p[0]: p[1] for p in self.set.items() if p[0][1] != n}

blacklisted_parents = map(lambda op: op[0],
filter(lambda bl : bl[1] == n, self.blacklist))

# If max indegree == 0, there is no limit.
if self.max_indegree == 0 or len(parents) < self.max_indegree:

possible_parents = set(model.nodes())\
- set(n)\
- set(parents)\
- set(blacklisted_parents)

for p in possible_parents:
(continues on next page)
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if model.can_add_arc(p, n):
self.set[(p, n)] = score.local_score(model, n, parents + [p])\

- lc.local_score(model, n)

def cache_scores(self, model, score):
for n in model.nodes():

self.update_node(model, score, n)

def find_max(self, model):
sort_ops = sorted(self.set.items(), key=lambda op: op[1], reverse=True)

for s in sort_ops:
arc = s[0]
delta = s[1]
if model.can_add_arc(arc[0], arc[1]):

return MyAddArc(arc[0], arc[1], delta)
return None

def find_max_tabu(self, model, tabu):
sort_ops = sorted(self.set.items(), key=lambda op: op[1], reverse=True)

for s in sort_ops:
arc = s[0]
delta = s[1]
op = MyAddArc(arc[0], arc[1], delta)
# The operator can not be in the tabu set.
if model.can_add_arc(arc[0], arc[1]) and not tabu.contains(op):

return op
return None

def update_scores(self, model, score, changed_nodes):
for n in changed_nodes:

self.update_node(model, score, n)

def set_arc_blacklist(self, blacklist):
self.blacklist = set(blacklist)

def set_max_indegree(self, max_indegree):
self.max_indegree = max_indegree

def finished(self):
self.blacklist.clear()
self.max_indegree = 0
self.set.clear()

This OperatorSet can be used in a GreedyHillClimbing:

>>> from pybnesian.learning.algorithms import GreedyHillClimbing
>>> hc = GreedyHillClimbing()
>>> add_set = MyAddArcSet()
>>> # We will use the OracleScore: a -> c <- b, c -> d
>>> score = OracleScore()

(continues on next page)
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>>> bn = GaussianNetwork(["a", "b", "c", "d"])
>>> learned = hc.estimate(add_set, score, bn)
>>> assert set(learned_model.arcs()) == {("a", "c"), ("b", "c"), ("c", "d")}
>>> learned = hc.estimate(add_set, score, bn, arc_blacklist=[("b", "c")])
>>> assert set(learned.arcs()) == {("a", "c"), ("c", "d")}
>>> learned = hc.estimate(add_set, score, bn, max_indegree=1)
>>> assert learned.num_arcs() == 2

2.6 Callbacks Extension

The greedy hill-climbing algorithm admits a callback parameter that allows some custom functionality to be run on
each iteration. To create a callback, a new class must be created that inherits from Callback. A new Callback needs
to implement the following method:

Callback.call.

To illustrate, we will create a callback that prints the last operator applied on each iteration:

from pybnesian.learning.algorithms.callbacks import Callback

class PrintOperator(Callback):

def __init__(self):
# IMPORTANT: Always call the parent class to initialize the C++ object.
Callback.__init__(self)

def call(self, model, operator, score, iteration):
if operator is None:

if iteration == 0:
print("The algorithm starts!")

else:
print("The algorithm ends!")

else:
print("Iteration " + str(iteration) + ". Last operator: " + str(operator))

Now, we can use this callback in the GreedyHillClimbing:

>>> from pybnesian.learning.algorithms import GreedyHillClimbing
>>> hc = GreedyHillClimbing()
>>> add_set = MyAddArcSet()
>>> # We will use the OracleScore: a -> c <- b, c -> d
>>> score = OracleScore()
>>> bn = GaussianNetwork(["a", "b", "c", "d"])
>>> callback = PrintOperator()
>>> learned = hc.estimate(add_set, score, bn, callback=callback)
The algorithm starts!
Iteration 1. Last operator: MyAddArc(c -> d)
Iteration 2. Last operator: MyAddArc(b -> c)
Iteration 3. Last operator: MyAddArc(a -> c)
The algorithm ends!
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3.1 Data Manipulation

3.1.1 DataFrame Operations

3.1.2 Dynamic Data

class DynamicVariable
A DynamicVariable is the representation of a column in a DynamicDataFrame.

A DynamicVariable is a tuple (variable_index, temporal_index). variable_index is a str or int that
represents the name or index of the variable in the original static DataFrame. temporal_index is an int that
represents the temporal slice in the DynamicDataFrame. See DynamicDataFrame.loc() for usage examples.

3.2 Graph Module

3.2.1 Graphs

All the nodes in the graph are represented by a name and are associated with a non-negative unique index.

The name can be obtained from the unique index using the method name(), while the unique index can be obtained
from the index using the method index().

Removing a node invalidates the index of the removed node, while leaving the other nodes unaffected. When adding a
node, the graph may reuse previously invalidated indices to avoid wasting too much memory.

If there are not removal of nodes in a graph, the unique indices are in the range [0-num_nodes()). The removal of
nodes, can lead to some indices being greater or equal to num_nodes():

>>> from pybnesian.graph import UndirectedGraph
>>> g = UndirectedGraph(["a", "b", "c", "d"])
>>> g.index("a")
0
>>> g.index("b")
1
>>> g.index("c")
2
>>> g.index("d")
3
>>> g.remove_node("a")

(continues on next page)
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>>> g.index("b")
1
>>> g.index("c")
2
>>> g.index("d")
3
>>> assert g.index("d") >= g.num_nodes()

Sometimes, this effect may be undesirable because we want to identify our nodes with a index in a range
[0-num_nodes()). For this reason, there is a collapsed_index() method and other related methods
index_from_collapsed(), collapsed_from_index() and collapsed_name(). Note that the collapsed index
is not unique, because removing a node can change the collapsed index of at most one other node.

>>> from pybnesian.graph import UndirectedGraph
>>> g = UndirectedGraph(["a", "b", "c", "d"])
>>> g.collapsed_index("a")
0
>>> g.collapsed_index("b")
1
>>> g.collapsed_index("c")
2
>>> g.collapsed_index("d")
3
>>> g.remove_node("a")
>>> g.collapsed_index("b")
1
>>> g.collapsed_index("c")
2
>>> g.collapsed_index("d")
0
>>> assert all([g.collapsed_index(n) < g.num_nodes() for n in g.nodes()])

3.2.2 Conditional Graphs

A conditional graph is the underlying graph in a conditional Bayesian networks ([PGM], Section 5.6). In a conditional
Bayesian network, only the normal nodes can have a conditional probability density, while the interface nodes are
always observed. A conditional graph splits all the nodes in two subsets: normal nodes and interface nodes. In a
conditional graph, the interface nodes can not have parents.

In a conditional graph, normal nodes can be returned with nodes(), the interface nodes with interface_nodes()
and the joint set of nodes with joint_nodes(). Also, there are many other functions that have the prefix interface
and joint to denote the interface and joint sets of nodes. Among them, there is a collapsed index version for only
interface nodes, interface_collapsed_index(), and the joint set of nodes, joint_collapsed_index(). Note
that the collapsed index for each set of nodes is independent.
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3.2.3 Bibliography

3.3 Factors module

3.3.1 Abstract Types

The FactorType and Factor classes are abstract and both of them need to be implemented to create a new factor
type. Each Factor is always associated with a specific FactorType.

3.3.2 Continuous Factors

The continuous factors are implemented in the submodule pybnesian.factors.continuous.

Linear Gaussian CPD

Conditional Kernel Density Estimation (CKDE)

3.3.3 Discrete Factors

The discrete factors are implemented in the submodule pybnesian.factors.discrete.

3.3.4 Other Types

This types are not factors, but are auxiliary types for other factors.

3.3.5 Bibliography

3.4 Bayesian Networks

3.4.1 Abstract Classes

This classes are abstract and define the interface for Bayesian network objects. The BayesianNetworkType specifies
the type of Bayesian networks.

Each BayesianNetworkType can be used in many multiple variants of Bayesian networks: BayesianNetworkBase
(a normal Bayesian network), ConditionalBayesianNetworkBase (a conditional Bayesian network) and
DynamicBayesianNetworkBase (a dynamic Bayesian network).

3.4.2 Bayesian Network Types

3.4.3 Bayesian Networks

Concrete Bayesian Networks

These classes implements BayesianNetwork with an specific BayesianNetworkType. Thus, the constructors do not
have the type parameter.
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3.4.4 Conditional Bayesian Networks

Concrete Conditional Bayesian Networks

These classes implements ConditionalBayesianNetwork with an specific BayesianNetworkType. Thus, the con-
structors do not have the type parameter.

3.4.5 Dynamic Bayesian Networks

Concrete Dynamic Bayesian Networks

These classes implements DynamicBayesianNetwork with an specific BayesianNetworkType. Thus, the construc-
tors do not have the type parameter.

3.5 Learning module

3.5.1 Parameter Learning

Currently, it only implements Maximum Likelihood Estimation (MLE) for LinearGaussianCPD and
DiscreteFactor.

3.5.2 Structure Scores

This section includes different learning scores that evaluate the goodness of a Bayesian network. This is used for the
score-and-search learning algorithms such as GreedyHillClimbing, MMHC and DMMHC.

Abstract classes

Concrete classes

3.5.3 Learning Operators

This section includes learning operators that are used to make small, local changes to a given Bayesian network struc-
ture. This is used for the score-and-search learning algorithms such as GreedyHillClimbing, MMHC and DMMHC.

There are two type of classes in this section: operators and operator sets:

• The operators are the representation of a change in a Bayesian network structure.

• The operator sets coordinate sets of operators. They can find the best operator over the set and update the score
and availability of each operator in the set.
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Operators

Operator Sets

Other

3.5.4 Independence Tests

This section includes conditional tests of independence. These tests are used in many constraint-based learning algo-
rithms such as PC, MMPC, MMHC and DMMHC.

Abstract classes

Concrete classes

Bibliography

3.5.5 Learning Algorithms

This classes implement many different learning structure algorithms.

Learning Algorithms Components

Learning Callbacks

Bibliography

3.6 Serialization

All the relevant objects (graphs, factors, Bayesian networks, etc) can be saved/loaded using the pickle format.

These objects can be saved using directly pickle.dump() and pickle.load(). For example:

>>> import pickle
>>> from pybnesian.graph import Dag
>>> g = Dag(["a", "b", "c", "d"], [("a", "b")])
>>> with open("saved_graph.pickle", "wb") as f:
... pickle.dump(g, f)
>>> with open("saved_graph.pickle", "rb") as f:
... lg = pickle.load(f)
>>> assert lg.nodes() == ["a", "b", "c", "d"]
>>> assert lg.arcs() == [("a", "b")]

We can reduce some boilerplate code using the save methods: Factor.save(), UndirectedGraph.save(),
DirectedGraph.save(), BayesianNetworkBase.save(), etc. . . Also, the pybnesian.load() can load any
saved object:

>>> import pickle
>>> from pybnesian import load
>>> from pybnesian.graph import Dag
>>> g = Dag(["a", "b", "c", "d"], [("a", "b")])

(continues on next page)
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(continued from previous page)

>>> g.save("saved_graph")
>>> lg = load("saved_graph.pickle")
>>> assert lg.nodes() == ["a", "b", "c", "d"]
>>> assert lg.arcs() == [("a", "b")]

pybnesian.load(filename: str)→ object
Load the saved object (a Factor, a graph, a BayesianNetworkBase, etc. . . ) in filename.

Parameters filename – File name.

Returns The object saved in the file.
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CHAPTER

FOUR

CHANGELOG

4.1 v0.2.1

• An error related to the processing of categorical data with too many categories has been corrected.

• Removed -march=native flag in the build script to avoid the use of instruction sets not available on some CPUs.

4.2 v0.2.0

• Added conditional linear Gaussian networks (CLGNetworkType, CLGNetwork, ConditionalCLGNetwork and
DynamicCLGNetwork).

• Implemented ChiSquare (and DynamicChiSquare) indepencence test.

• Implemented MutualInformation (and DynamicMutualInformation) indepencence test. This indepen-
dence test is valid for hybrid data.

• Implemented BDe (Bayesian Dirichlet equivalent) score (and DynamicBDe).

• Added UnknownFactorType as default FactorType for Bayesian networks when the node type could not be
deduced.

• Added Assignment class to represent the assignment of values to variables.

API changes:

• Added method Score.data().

• Added BayesianNetworkType.data_default_node_type() for non-homogeneous
BayesianNetworkType.

• Added constructor for HeterogeneousBN to specify a default FactorType for each data type. Also, it adds
HeterogeneousBNType.default_node_types() and HeterogeneousBNType.single_default().

• Added BayesianNetworkBase.has_unknown_node_types() and BayesianNetworkBase.
set_unknown_node_types().

• Changed signature of BayesianNetworkType.compatible_node_type() to include the new node type as
argument.

• Removed FactorType.opposite_semiparametric(). This functionality has been replaced by
BayesianNetworkType.alternative_node_type().

• Included model as argument of Operator.opposite().

• Added method OperatorSet.set_type_blacklist(). Added a type blacklist argument to
ChangeNodeTypeSet constructor.
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4.3 v0.1.0

• First release! =).
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INDICES AND TABLES

• genindex

• modindex

• search
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