Mutual Information between Categorical and Gaussian data

David Atienza

June 7, 2021

1 Introduction

This documents shows how to calculate the (conditional) mutual information between categorical and Gaussian data. The mutual information is always calculated between two variables X and Y, and can be conditioned on a set of variables \mathbf{Z}. Any of this variables can be discrete (categorical) or continuous (Gaussian). When needed, the subscript D and C are used to specify that the variable is discrete or continuous, e.g. X_{D} is a discrete X variable, \mathbf{Z}_{C} is a set of conditioning continuous variables. The instantations for a given variable is denoted using lowercase, e.g. x_{d}, y_{c}, etc. The number of categories of the variables X and Y are denoted llx and lly, respectively. The total number of categories for all the \mathbf{Z}_{D} variables is denoted $1 \mathrm{lz}=\prod_{i} l l z_{i}$.

2 Mutual Information

2.1 Mutual Information between Two Discrete Variables

First we will calculate the mutual information between two discrete variables:

$$
\begin{align*}
I\left(X_{D} ; Y_{D} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)= & H\left(X_{D}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)+H\left(Y_{D}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)-H\left(X_{D}, Y_{D}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)-H\left(\mathbf{Z}_{D}, \mathbf{Z}_{C}\right) \\
= & H\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)+H\left(X_{D}, \mathbf{Z}_{D}\right)+H\left(\mathbf{Z}_{C} \mid Y_{D}, \mathbf{Z}_{D}\right)+H\left(Y_{D}, \mathbf{Z}_{D}\right) \tag{1}\\
& -H\left(\mathbf{Z}_{C} \mid X_{D}, Y_{D}, \mathbf{Z}_{D}\right)-H\left(X_{D}, Y_{D}, \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{D}\right)
\end{align*}
$$

Note that:

$$
\begin{equation*}
I\left(X_{D} ; Y_{D} \mid \mathbf{Z}_{D}\right)=H\left(X_{D}, \mathbf{Z}_{D}\right)+H\left(Y_{D}, \mathbf{Z}_{D}\right)-H\left(X_{D}, Y_{D}, \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{D}\right) \tag{2}
\end{equation*}
$$

Thus:

$$
\begin{align*}
I\left(X_{D} ; Y_{D} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)= & I\left(X_{D} ; Y_{D} \mid \mathbf{Z}_{D}\right) \\
& +H\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)+H\left(\mathbf{Z}_{C} \mid Y_{D}, \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{C} \mid X_{D}, Y_{D}, \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right) \tag{3}
\end{align*}
$$

where $H\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)$ is the entropy of the Gaussian variables conditioned on X_{D}, \mathbf{Z}_{D}. This can be easily calculated:

$$
\begin{align*}
H\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right) & =-\sum_{x_{d} \in X_{D}, \mathbf{z}_{d} \in \mathbf{Z}_{D}} \int f\left(\mathbf{Z}_{C}, x_{d}, \mathbf{z}_{d}\right) \log \left(\frac{f\left(\mathbf{Z}_{C}, x_{d}, \mathbf{z}_{d}\right)}{f\left(x_{d}, \mathbf{z}_{d}\right)}\right) d \mathbf{Z}_{C} \\
& =-\sum_{x_{d} \in X_{D}, \mathbf{z}_{d} \in \mathbf{Z}_{D}} p\left(x_{d}, \mathbf{z}_{d}\right) \int f\left(\mathbf{Z}_{C} \mid x_{d}, \mathbf{z}_{d}\right) \log \left(f\left(\mathbf{Z}_{C} \mid x_{d}, \mathbf{z}_{d}\right)\right) d \mathbf{Z}_{C} \tag{4}\\
& =\sum_{x_{d} \in X_{D}, \mathbf{z}_{d} \in \mathbf{Z}_{D}} p\left(x_{d}, \mathbf{z}_{d}\right) H\left(\mathbf{Z}_{C} \mid x_{d}, \mathbf{z}_{d}\right)
\end{align*}
$$

The last integral in (4) is the entropy of the Gaussian distribution trained with the x_{d}, \mathbf{z}_{d} configuration.

For a Gaussian distribution, this integral can be solved with a closed-form formula:

$$
\begin{equation*}
H\left(\mathbf{Z}_{C} \mid x_{d}, \mathbf{z}_{d}\right)=\frac{k}{2}+\frac{k}{2} \log (2 \pi)+\frac{1}{2} \log \left(\left|\boldsymbol{\Sigma}_{x_{d}, \mathbf{z}_{d}}\right|\right) \tag{5}
\end{equation*}
$$

where $k=\left|\mathbf{Z}_{C}\right|$ is the dimensionality of the Gaussian distribution and $\boldsymbol{\Sigma}_{x_{d}, \mathbf{Z}_{d}}$ is the covariance of the data with the discrete configuration x_{d}, \mathbf{z}_{d}.

The remaining terms $H\left(\mathbf{Z}_{C} \mid Y_{D}, \mathbf{Z}_{D}\right), H\left(\mathbf{Z}_{C} \mid X_{D}, Y_{D}, \mathbf{Z}_{D}\right)$ and $H\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)$ can be calculated similarly.

2.2 Mutual Information between a Discrete and Continuous Variable

$$
\begin{align*}
I\left(X_{D} ; Y_{C} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)= & H\left(X_{D}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)+H\left(Y_{C}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)-H\left(X_{D}, Y_{C}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)-H\left(\mathbf{Z}_{D}, \mathbf{Z}_{C}\right) \\
= & H\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)+H\left(X_{D}, \mathbf{Z}_{D}\right)+H\left(Y_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)+H\left(\mathbf{Z}_{D}\right) \\
& -H\left(Y_{C}, \mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)-H\left(X_{D}, \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{D}\right) \\
= & H\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)+H\left(Y_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)-H\left(Y_{C}, \mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right) \tag{6}
\end{align*}
$$

where the entropy terms can be calculated as in (4), but in this case the variable Y is added in some of the estimated multivariate Gaussian distributions.

2.3 Mutual Information between Two Continuous Variable

For an unconditional mutual information, the mutual information can be calculated with the correlation coefficient:

$$
\begin{equation*}
I\left(X_{C} ; Y_{C}\right)=-\frac{1}{2} \log \left(1-\rho^{2}\right) \tag{7}
\end{equation*}
$$

where ρ is the linear correlation coefficient between X and Y.
For the general case:

$$
\begin{align*}
I\left(X_{C} ; Y_{C} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)= & H\left(X_{C}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)+H\left(Y_{C}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)-H\left(X_{C}, Y_{C}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)-H\left(\mathbf{Z}_{D}, \mathbf{Z}_{C}\right) \\
= & H\left(X_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)+H\left(\mathbf{Z}_{D}\right)+H\left(Y_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)+H\left(\mathbf{Z}_{D}\right) \\
& -H\left(X_{C}, Y_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{D}\right) \\
= & H\left(X_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)+H\left(Y_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)-H\left(X_{C}, Y_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)-H\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right) \tag{8}
\end{align*}
$$

where the entropy terms can be calculated as in (4), but in this case the variables X and Y are added in some of the estimated multivariate Gaussian distributions.

3 Empirical Degrees of Freedom

This section shows the empirical degrees of freedom by running a simulation over 1000 datasets of 100000 instances that are compatible with the null hypothesis (conditional independence). The empirical degrees of freedom have been rounded to the nearest integer number.

3.1 Empirical Degrees of Freedom between Two Discrete Variables

	nt.	par		2 cont. parents				3 cont. parents				4 cont. parents			
11 x	lly	llz	df	llx	lly	1 lz	df	1lx	lly	1 lz	df	llx	lly	11 z	df
2	4	3	18	2	4	3	36	2	4	3	63	2	4	3	99
2	3	4	16	2	3	4	32	2	3	4	56	2	3	4	88
3	4	2	24	3	4	2	48	3	4	2	84	3	4		132

Inducted formula:

$$
\begin{equation*}
\mathrm{df}=(\mathrm{llx}-1) \cdot(\mathrm{lly}-1) \cdot \mathrm{llz} \cdot\left[1+\frac{\left|\mathbf{Z}_{C}\right| \cdot\left(\left|\mathbf{Z}_{C}\right|+1\right)}{2}\right] \tag{9}
\end{equation*}
$$

3.2 Empirical Degrees of Freedom between a Discrete and Continuous Variable

1 cont. parents			2 cont. parents			3 cont. parents			4 cont. parents		
llx	llz	df	llx	1 lz	df	llx	llz	df	llx	1 lz	df
2	3	6	2	3	9	2	3	12	2	3	15
2	4	8	2	4	12	2	4	16	2	4	20
3	2	8	3	2	12	3	2	16	3	2	20
3	4	16	3	4	24	3	4	32	3	4	40
4	2	12	4	2	18	4	2	24	4	2	30
4	3	18	4	3	27	4	3	36	4	3	45

Inducted formula:

$$
\begin{equation*}
\mathrm{df}=(\mathrm{llx}-1) \cdot \mathrm{llz} \cdot\left[1+\left|\mathbf{Z}_{C}\right|\right] \tag{10}
\end{equation*}
$$

3.3 Empirical Degrees of Freedom between Two Continuous Variables

 Inducted formula:$$
\begin{equation*}
\mathrm{df}=\mathrm{llz} \tag{11}
\end{equation*}
$$

1 cont. parents
contx conty llz df

2	2
3	3
4	4

2 cont. parents contx conty llz df $2 \quad 2$
33
$4 \quad 4$

(a) H_{0} model

3 cont. parents
contx conty llz df $2 \quad 2$
33
44

(b) H_{1} model

Figure 1: Null hypothesis (left) and alternative (right) models for two discrete variables.

4 Asymptotic Degrees of Freedom

4.1 Asymptotic Degrees of Freedom between Two Discrete Variables

There is a direct relationship between mutual information and a likelihood ratio test (G-test):

$$
\begin{equation*}
G=2 \cdot N \cdot I\left(X_{D} ; Y_{D} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right) \tag{12}
\end{equation*}
$$

The G statistic is distributed as a χ^{2} if the null hypothesis is true. The degrees of freedom of the χ^{2} distribution is the difference in the number of free parameters between a model where there is conditional dependence between X_{D} and Y_{D} (Figure 1b), and a model where there is no conditional dependence between X_{D} and Y_{D} (Figure 1a).

The only node that contains a different number of parameters is the conditional distribution of Y_{D}. So we must analyze that distribution to find the degrees of freedom of the χ^{2} distribution.

For the H_{0} model, the distribution $f\left(Y_{D} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ can be defined using the Bayes rule (as in a conditional linear Gaussian networks the discrete nodes do not have continuous parents):

$$
\begin{equation*}
f\left(Y_{D} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)=\frac{f\left(\mathbf{Z}_{C} \mid Y_{D}, \mathbf{Z}_{D}\right) f\left(Y_{D} \mid \mathbf{Z}_{D}\right)}{f\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)} \tag{13}
\end{equation*}
$$

Note that only lly -1 models are needed to be fitted because the probabilities $f\left(Y_{D} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ must sum to 1 , so the probability for the last category can be defined as:

$$
\begin{equation*}
f\left(Y_{D}=\text { lly } \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)=1-\sum_{i=1}^{\mathrm{lly}-1} \frac{f\left(\mathbf{Z}_{C} \mid Y_{D}=i, \mathbf{Z}_{D}\right) f\left(Y_{D}=i \mid \mathbf{Z}_{D}\right)}{f\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)} \tag{14}
\end{equation*}
$$

$f\left(\mathbf{Z}_{C} \mid Y_{D}, \mathbf{Z}_{D}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
(\mathrm{lly}-1) \cdot \mathrm{llz} \cdot \frac{\left|\mathbf{Z}_{C}\right| \cdot\left(\left|\mathbf{Z}_{C}\right|+3\right)}{2} \tag{15}
\end{equation*}
$$

Note that $\frac{\left|\mathbf{Z}_{C}\right| \cdot\left(\left|\mathbf{Z}_{C}\right|+3\right)}{2}$ is the number of free parameters of a multivariate Gaussian distribution of $\left|\mathbf{Z}_{C}\right|$ dimensions.
$f\left(Y_{D} \mid \mathbf{Z}_{D}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
(\mathrm{lly}-1) \cdot \mathrm{llz} \tag{16}
\end{equation*}
$$

$f\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)$ does not contain free parameters because it can be represented using the previous functions:

$$
\begin{equation*}
f\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)=\sum_{y_{d} \in Y_{D}} f\left(\mathbf{Z}_{C} \mid Y_{D}=y_{d}, \mathbf{Z}_{D}\right) f\left(Y_{D}=y_{d} \mid \mathbf{Z}_{D}\right) \tag{17}
\end{equation*}
$$

For the H_{1} model, the distribution $f\left(Y_{D} \mid X_{D}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ can be defined using the Bayes rule (as in a conditional linear Gaussian networks the discrete nodes do not have continuous parents):

$$
\begin{equation*}
f\left(Y_{D} \mid X_{D}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)=\frac{f\left(\mathbf{Z}_{C} \mid X_{D}, Y_{D}, \mathbf{Z}_{D}\right) f\left(Y_{D} \mid X_{D}, \mathbf{Z}_{D}\right)}{f\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)} \tag{18}
\end{equation*}
$$

Note that only lly-1 models are needed to be fitted because the probabilities $f\left(Y_{D} \mid X_{D}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ must sum to 1 , so the probability for the last category can be defined as:

$$
\begin{equation*}
f\left(Y_{D}=\text { lly } \mid X_{D}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)=1-\sum_{i=1}^{\text {lly }-1} \frac{f\left(\mathbf{Z}_{C} \mid X_{D}, Y_{D}=i, \mathbf{Z}_{D}\right) f\left(Y_{D}=i \mid X_{D}, \mathbf{Z}_{D}\right)}{f\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)} \tag{19}
\end{equation*}
$$

$f\left(\mathbf{Z}_{C} \mid X_{D}, Y_{D}, \mathbf{Z}_{D}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
(\mathrm{lly}-1) \cdot \mathrm{llx} \cdot \mathrm{llz} \cdot \frac{\left|\mathbf{Z}_{C}\right| \cdot\left(\left|\mathbf{Z}_{C}\right|+3\right)}{2} \tag{20}
\end{equation*}
$$

$f\left(Y_{D} \mid X_{D}, \mathbf{Z}_{D}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
(l l y-1) \cdot l l x \cdot l l z \tag{21}
\end{equation*}
$$

$f\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)$ does not contain free parameters because it can be represented using the previous functions:

$$
\begin{equation*}
f\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)=\sum_{y_{d} \in Y_{D}} f\left(\mathbf{Z}_{C} \mid X_{D}, Y_{D}=y_{d}, \mathbf{Z}_{D}\right) f\left(Y_{D}=y_{d} \mid X_{D}, \mathbf{Z}_{D}\right) \tag{22}
\end{equation*}
$$

The difference in parameters (and the degrees of freedom of the χ^{2}) is equal to:

$$
\begin{align*}
\mathrm{df} & =\mathrm{lly}-1) \cdot(\mathrm{llx}-1) \cdot \mathrm{llz} \cdot \frac{\left|\mathbf{Z}_{C}\right| \cdot\left(\left|\mathbf{Z}_{C}\right|+3\right)}{2}+(\mathrm{lly}-1) \cdot(\mathrm{llx}-1) \cdot \mathrm{llz} \\
& =(\mathrm{lly}-1) \cdot(\mathrm{llx}-1) \cdot \mathrm{llz}\left[1+\frac{\left|\mathbf{Z}_{C}\right| \cdot\left(\left|\mathbf{Z}_{C}\right|+3\right)}{2}\right] \tag{23}
\end{align*}
$$

4.2 Asymptotic Degrees of Freedom between a Discrete and Continuous Variable

The H_{0} model is shown in Figure 2a and the H_{1} model is shown in Figure 2b.
The distribution $f\left(Y_{C} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ has a number of free parameters equal to:

(a) H_{0} model

(b) H_{1} model

Figure 2: Null hypothesis (left) and alternative (right) models for a continuous and discrete variable.

(a) H_{0} model

(b) H_{1} model

Figure 3: Variation of the null hypothesis (left) and alternative (right) models for a continuous and discrete variable.

$$
\begin{equation*}
\mathrm{llz} \cdot\left(\left|\mathbf{Z}_{C}\right|+2\right) \tag{24}
\end{equation*}
$$

The distribution $f\left(Y_{C} \mid X_{D}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
\mathrm{llx} \cdot \mathrm{llz} \cdot\left(\left|\mathbf{Z}_{C}\right|+2\right) \tag{25}
\end{equation*}
$$

The difference in parameters (and the degrees of freedom of the χ^{2}) is equal to:

$$
\begin{equation*}
\mathrm{df}=(\mathrm{llx}-1) \cdot \mathrm{llz} \cdot\left(\left|\mathbf{Z}_{C}\right|+2\right) \tag{26}
\end{equation*}
$$

The same result can be derived using a different H_{0} model (Figure 3a) and H_{1} model (Figure 3b). In this case, the difference in the number of parameters happens to be in the conditional distribution of X_{D}.

The $f\left(X_{D} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ can be defined using the Bayes rule:

$$
\begin{equation*}
f\left(X_{D} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)=\frac{f\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right) f\left(X_{D} \mid \mathbf{Z}_{D}\right)}{f\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)} \tag{27}
\end{equation*}
$$

Note that only llx -1 models are needed to be fitted because the probabilities $f\left(X_{D} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ must sum to 1 , so the probability for the last category can be defined as:

$$
\begin{equation*}
f\left(X_{D}=\operatorname{llx} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)=1-\sum_{i=1}^{\mathrm{llx}-1} \frac{f\left(\mathbf{Z}_{C} \mid X_{D}=i, \mathbf{Z}_{D}\right) f\left(X_{D}=i \mid \mathbf{Z}_{D}\right)}{f\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)} \tag{28}
\end{equation*}
$$

The distribution $f\left(\mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
(\mathrm{llx}-1) \cdot \mathrm{llz} \cdot \frac{\left|\mathbf{Z}_{C}\right| \cdot\left(\left|\mathbf{Z}_{C}\right|+3\right)}{2} \tag{29}
\end{equation*}
$$

The distribution $f\left(X_{D} \mid \mathbf{Z}_{D}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
(1 l x-1) \cdot l l z \tag{30}
\end{equation*}
$$

$f\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)$ does not contain free parameters because it can be represented using the previous functions:

$$
\begin{equation*}
f\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)=\sum_{x_{d} \in X_{D}} f\left(\mathbf{Z}_{C} \mid X_{D}=x_{d}, \mathbf{Z}_{D}\right) f\left(X_{D}=x_{d} \mid \mathbf{Z}_{D}\right) \tag{31}
\end{equation*}
$$

The $f\left(X_{D} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ can be defined using the Bayes rule:

$$
\begin{equation*}
f\left(X_{D} \mid Y_{C}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)=\frac{f\left(Y_{C}, \mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right) f\left(X_{D} \mid \mathbf{Z}_{D}\right)}{f\left(Y_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)} \tag{32}
\end{equation*}
$$

Note that only llx - 1 models are needed to be fitted because the probabilities $f\left(X_{D} \mid\right.$ $\left.Y_{C}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ must sum to 1 , so the probability for the last category can be defined as:

$$
\begin{equation*}
f\left(X_{D}=\mathrm{llx} \mid Y_{C}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)=1-\sum_{i=1}^{\mathrm{lnx}-1} \frac{f\left(Y_{C}, \mathbf{Z}_{C} \mid X_{D}=i, \mathbf{Z}_{D}\right) f\left(X_{D}=i \mid \mathbf{Z}_{D}\right)}{f\left(Y_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)} \tag{33}
\end{equation*}
$$

The distribution $f\left(Y_{C}, \mathbf{Z}_{C} \mid X_{D}, \mathbf{Z}_{D}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
(\mathrm{llx}-1) \cdot \mathrm{llz} \cdot \frac{\left(\left|\mathbf{Z}_{C}\right|+1\right) \cdot\left(\left|\mathbf{Z}_{C}\right|+4\right)}{2} \tag{34}
\end{equation*}
$$

The distribution $f\left(X_{D} \mid \mathbf{Z}_{D}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
(1 l x-1) \cdot l l z \tag{35}
\end{equation*}
$$

$f\left(\mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)$ does not contain free parameters because it can be represented using the previous functions:

$$
\begin{equation*}
f\left(Y_{C}, \mathbf{Z}_{C} \mid \mathbf{Z}_{D}\right)=\sum_{x_{d} \in X_{D}} f\left(Y_{C}, \mathbf{Z}_{C} \mid X_{D}=x_{d}, \mathbf{Z}_{D}\right) f\left(X_{D}=x_{d} \mid \mathbf{Z}_{D}\right) \tag{36}
\end{equation*}
$$

The difference in parameters (and the degrees of freedom of the χ^{2}) is equal to:

$$
\begin{align*}
\mathrm{df} & =(\mathrm{llx}-1) \cdot \mathrm{llz} \cdot\left(\frac{\left|\mathbf{Z}_{C}\right|^{2}+5\left|\mathbf{Z}_{C}\right|+4-\left|\mathbf{Z}_{C}\right|^{2}-3\left|\mathbf{Z}_{C}\right|}{2}\right) \\
& =(\mathrm{llx}-1) \cdot \mathrm{llz} \cdot\left(\frac{2\left|\mathbf{Z}_{C}\right|+4}{2}\right) \tag{37}\\
& =(1 \mathrm{~lx}-1) \cdot \mathrm{llz} \cdot\left(\left|\mathbf{Z}_{C}\right|+2\right)
\end{align*}
$$

(a) H_{0} model

(b) H_{1} model

Figure 4: Null hypothesis (left) and alternative (right) models for two continuous variables.

4.3 Asymptotic Degrees of Freedom between Two Continuous Variables

The H_{0} model is shown in Figure 4a and the H_{1} model is shown in Figure 4b.
For the H_{0} model, the distribution $f\left(Y_{C} \mid \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
\mathrm{llz} \cdot\left(\left|\mathbf{Z}_{C}\right|+2\right) \tag{38}
\end{equation*}
$$

For the H_{1} model, the distribution $f\left(Y_{C} \mid X_{C}, \mathbf{Z}_{D}, \mathbf{Z}_{C}\right)$ has a number of free parameters equal to:

$$
\begin{equation*}
\mathrm{llz} \cdot\left(\left|\mathbf{Z}_{C}\right|+3\right) \tag{39}
\end{equation*}
$$

The difference in parameters (and the degrees of freedom of the χ^{2}) is equal to:

$$
\begin{array}{|l|l|}
\hline 1 \mathrm{l} \tag{40}\\
\hline
\end{array}
$$

