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1 Introduction

This documents shows how to calculate the (conditional) mutual information between categorical
and Gaussian data. The mutual information is always calculated between two variables X and Y ,
and can be conditioned on a set of variables Z. Any of this variables can be discrete (categorical) or
continuous (Gaussian). When needed, the subscript D and C are used to specify that the variable
is discrete or continuous, e.g. XD is a discrete X variable, ZC is a set of conditioning continuous
variables. The instantations for a given variable is denoted using lowercase, e.g. xd, yc, etc. The
number of categories of the variables X and Y are denoted llx and lly, respectively. The total
number of categories for all the ZD variables is denoted llz =

∏
i llzi.

2 Mutual Information

2.1 Mutual Information between Two Discrete Variables

First we will calculate the mutual information between two discrete variables:

I(XD;YD | ZD,ZC) = H(XD,ZD,ZC) +H(YD,ZD,ZC)−H(XD, YD,ZD,ZC)−H(ZD,ZC)

= H(ZC | XD,ZD) +H(XD,ZD) +H(ZC | YD,ZD) +H(YD,ZD)

−H(ZC | XD, YD,ZD)−H(XD, YD,ZD)−H(ZC | ZD)−H(ZD)

(1)

Note that:

I(XD;YD | ZD) = H(XD,ZD) +H(YD,ZD)−H(XD, YD,ZD)−H(ZD) (2)

Thus:

I(XD;YD | ZD,ZC) = I(XD;YD | ZD)

+H(ZC | XD,ZD) +H(ZC | YD,ZD)−H(ZC | XD, YD,ZD)−H(ZC | ZD)
(3)

where H(ZC | XD,ZD) is the entropy of the Gaussian variables conditioned on XD,ZD. This
can be easily calculated:
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H(ZC | XD,ZD) = −
∑

xd∈XD,zd∈ZD

∫
f(ZC , xd, zd) log

(
f(ZC , xd, zd)

f(xd, zd)

)
dZC

= −
∑

xd∈XD,zd∈ZD

p(xd, zd)

∫
f(ZC | xd, zd) log (f(ZC | xd, zd)) dZC

=
∑

xd∈XD,zd∈ZD

p(xd, zd)H(ZC | xd, zd)

(4)

The last integral in (4) is the entropy of the Gaussian distribution trained with the xd, zd

configuration.
For a Gaussian distribution, this integral can be solved with a closed-form formula:

H(ZC | xd, zd) =
k

2
+
k

2
log(2π) +

1

2
log(|Σxd,zd |) (5)

where k = |ZC | is the dimensionality of the Gaussian distribution and Σxd,zd is the covariance of
the data with the discrete configuration xd, zd.

The remaining terms H(ZC | YD,ZD), H(ZC | XD, YD,ZD) and H(ZC | ZD) can be calculated
similarly.

2.2 Mutual Information between a Discrete and Continuous Variable

I(XD;YC | ZD,ZC) = H(XD,ZD,ZC) +H(YC ,ZD,ZC)−H(XD, YC ,ZD,ZC)−H(ZD,ZC)

= H(ZC | XD,ZD) +H(XD,ZD) +H(YC ,ZC | ZD) +H(ZD)

−H(YC ,ZC | XD,ZD)−H(XD,ZD)−H(ZC | ZD)−H(ZD)

= H(ZC | XD,ZD) +H(YC ,ZC | ZD)−H(YC ,ZC | XD,ZD)−H(ZC | ZD)
(6)

where the entropy terms can be calculated as in (4), but in this case the variable Y is added in
some of the estimated multivariate Gaussian distributions.

2.3 Mutual Information between Two Continuous Variable

For an unconditional mutual information, the mutual information can be calculated with the
correlation coefficient:

I(XC ;YC) = −1

2
log
(
1− ρ2

)
(7)

where ρ is the linear correlation coefficient between X and Y .
For the general case:

I(XC ;YC | ZD,ZC) = H(XC ,ZD,ZC) +H(YC ,ZD,ZC)−H(XC , YC ,ZD,ZC)−H(ZD,ZC)

= H(XC ,ZC | ZD) +H(ZD) +H(YC ,ZC | ZD) +H(ZD)

−H(XC , YC ,ZC | ZD)−H(ZD)−H(ZC | ZD)−H(ZD)

= H(XC ,ZC | ZD) +H(YC ,ZC | ZD)−H(XC , YC ,ZC | ZD)−H(ZC | ZD)
(8)

where the entropy terms can be calculated as in (4), but in this case the variables X and Y are
added in some of the estimated multivariate Gaussian distributions.
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3 Empirical Degrees of Freedom

This section shows the empirical degrees of freedom by running a simulation over 1000 datasets
of 100000 instances that are compatible with the null hypothesis (conditional independence). The
empirical degrees of freedom have been rounded to the nearest integer number.

3.1 Empirical Degrees of Freedom between Two Discrete Variables

1 cont. parents 2 cont. parents 3 cont. parents 4 cont. parents
llx lly llz df llx lly llz df llx lly llz df llx lly llz df
2 4 3 18 2 4 3 36 2 4 3 63 2 4 3 99
2 3 4 16 2 3 4 32 2 3 4 56 2 3 4 88
3 4 2 24 3 4 2 48 3 4 2 84 3 4 2 132

Inducted formula:

df = (llx− 1) · (lly− 1) · llz ·
[
1 +
|ZC | · (|ZC |+ 1)

2

]
(9)

3.2 Empirical Degrees of Freedom between a Discrete and Continuous
Variable

1 cont. parents 2 cont. parents 3 cont. parents 4 cont. parents
llx conty llz df llx conty llz df llx conty llz df llx conty llz df
2 3 6 2 3 9 2 3 12 2 3 15
2 4 8 2 4 12 2 4 16 2 4 20
3 2 8 3 2 12 3 2 16 3 2 20
3 4 16 3 4 24 3 4 32 3 4 40
4 2 12 4 2 18 4 2 24 4 2 30
4 3 18 4 3 27 4 3 36 4 3 45

Inducted formula:

df = (llx− 1) · llz · [1 + |ZC |] (10)

3.3 Empirical Degrees of Freedom between Two Continuous Variables

Inducted formula:

df = llz (11)
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1 cont. parents 2 cont. parents 3 cont. parents 4 cont. parents
contx conty llz df contx conty llz df contx conty llz df contx conty llz df

2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4

ZD ZC

XD YD

(a) H0 model

ZD ZC

XD YD

(b) H1 model

Figure 1: Null hypothesis (left) and alternative (right) models for two discrete variables.

4 Asymptotic Degrees of Freedom

4.1 Asymptotic Degrees of Freedom between Two Discrete Variables

There is a direct relationship between mutual information and a likelihood ratio test (G-test):

G = 2 ·N · I(XD;YD | ZD,ZC) (12)

The G statistic is distributed as a χ2 if the null hypothesis is true. The degrees of freedom
of the χ2 distribution is the difference in the number of free parameters between a model where
there is conditional dependence between XD and YD (Figure 1b), and a model where there is no
conditional dependence between XD and YD (Figure 1a).

The only node that contains a different number of parameters is the conditional distribution
of YD. So we must analyze that distribution to find the degrees of freedom of the χ2 distribution.

For the H0 model, the distribution f(YD | ZD,ZC) can be defined using the Bayes rule (as in
a conditional linear Gaussian networks the discrete nodes do not have continuous parents):

f(YD | ZD,ZC) =
f(ZC | YD,ZD)f(YD | ZD)

f(ZC | ZD)
(13)

Note that only lly− 1 models are needed to be fitted because the probabilities f(YD | ZD,ZC)
must sum to 1, so the probability for the last category can be defined as:

f(YD = lly | ZD,ZC) = 1−
lly−1∑
i=1

f(ZC | YD = i,ZD)f(YD = i | ZD)

f(ZC | ZD)
(14)

f(ZC | YD,ZD) has a number of free parameters equal to:

(lly− 1) · llz · |ZC | · (|ZC |+ 3)

2
(15)
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Note that |ZC |·(|ZC |+3)
2

is the number of free parameters of a multivariate Gaussian distribution
of |ZC | dimensions.

f(YD | ZD) has a number of free parameters equal to:

(lly− 1) · llz (16)

f(ZC | ZD) does not contain free parameters because it can be represented using the previous
functions:

f(ZC | ZD) =
∑

yd∈YD

f(ZC | YD = yd,ZD)f(YD = yd | ZD) (17)

For the H1 model, the distribution f(YD | XD,ZD,ZC) can be defined using the Bayes rule (as
in a conditional linear Gaussian networks the discrete nodes do not have continuous parents):

f(YD | XD,ZD,ZC) =
f(ZC | XD, YD,ZD)f(YD | XD,ZD)

f(ZC | XD,ZD)
(18)

Note that only lly−1 models are needed to be fitted because the probabilities f(YD | XD,ZD,ZC)
must sum to 1, so the probability for the last category can be defined as:

f(YD = lly | XD,ZD,ZC) = 1−
lly−1∑
i=1

f(ZC | XD, YD = i,ZD)f(YD = i | XD,ZD)

f(ZC | XD,ZD)
(19)

f(ZC | XD, YD,ZD) has a number of free parameters equal to:

(lly− 1) · llx · llz · |ZC | · (|ZC |+ 3)

2
(20)

f(YD | XD,ZD) has a number of free parameters equal to:

(lly− 1) · llx · llz (21)

f(ZC | XD,ZD) does not contain free parameters because it can be represented using the
previous functions:

f(ZC | XD,ZD) =
∑

yd∈YD

f(ZC | XD, YD = yd,ZD)f(YD = yd | XD,ZD) (22)

The difference in parameters (and the degrees of freedom of the χ2) is equal to:

df = lly− 1) · (llx− 1) · llz · |ZC | · (|ZC |+ 3)

2
+ (lly− 1) · (llx− 1) · llz

= (lly− 1) · (llx− 1) · llz
[
1 +
|ZC | · (|ZC |+ 3)

2

] (23)

4.2 Asymptotic Degrees of Freedom between a Discrete and Continu-
ous Variable

The H0 model is shown in Figure 2a and the H1 model is shown in Figure 2b.
The distribution f(YC | ZD,ZC) has a number of free parameters equal to:
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ZD ZC

XD YC

(a) H0 model

ZD ZC

XD YC

(b) H1 model

Figure 2: Null hypothesis (left) and alternative (right) models for a continuous and discrete vari-
able.

ZD ZC

XD YC

(a) H0 model

ZD ZC

XD YC

(b) H1 model

Figure 3: Variation of the null hypothesis (left) and alternative (right) models for a continuous
and discrete variable.

llz · (|ZC |+ 2) (24)

The distribution f(YC | XD,ZD,ZC) has a number of free parameters equal to:

llx · llz · (|ZC |+ 2) (25)

The difference in parameters (and the degrees of freedom of the χ2) is equal to:

df = (llx− 1) · llz · (|ZC |+ 2) (26)

The same result can be derived using a differentH0 model (Figure 3a) andH1 model (Figure 3b).
In this case, the difference in the number of parameters happens to be in the conditional distribution
of XD.

The f(XD | ZD,ZC) can be defined using the Bayes rule:

f(XD | ZD,ZC) =
f(ZC | XD,ZD)f(XD | ZD)

f(ZC | ZD)
(27)

Note that only llx− 1 models are needed to be fitted because the probabilities f(XD | ZD,ZC)
must sum to 1, so the probability for the last category can be defined as:
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f(XD = llx | ZD,ZC) = 1−
llx−1∑
i=1

f(ZC | XD = i,ZD)f(XD = i | ZD)

f(ZC | ZD)
(28)

The distribution f(ZC | XD,ZD) has a number of free parameters equal to:

(llx− 1) · llz · |ZC | · (|ZC |+ 3)

2
(29)

The distribution f(XD | ZD) has a number of free parameters equal to:

(llx− 1) · llz (30)

f(ZC | ZD) does not contain free parameters because it can be represented using the previous
functions:

f(ZC | ZD) =
∑

xd∈XD

f(ZC | XD = xd,ZD)f(XD = xd | ZD) (31)

The f(XD | ZD,ZC) can be defined using the Bayes rule:

f(XD | YC ,ZD,ZC) =
f(YC ,ZC | XD,ZD)f(XD | ZD)

f(YC ,ZC | ZD)
(32)

Note that only llx − 1 models are needed to be fitted because the probabilities f(XD |
YC ,ZD,ZC) must sum to 1, so the probability for the last category can be defined as:

f(XD = llx | YC ,ZD,ZC) = 1−
llx−1∑
i=1

f(YC ,ZC | XD = i,ZD)f(XD = i | ZD)

f(YC ,ZC | ZD)
(33)

The distribution f(YC ,ZC | XD,ZD) has a number of free parameters equal to:

(llx− 1) · llz · (|ZC |+ 1) · (|ZC |+ 4)

2
(34)

The distribution f(XD | ZD) has a number of free parameters equal to:

(llx− 1) · llz (35)

f(ZC | ZD) does not contain free parameters because it can be represented using the previous
functions:

f(YC ,ZC | ZD) =
∑

xd∈XD

f(YC ,ZC | XD = xd,ZD)f(XD = xd | ZD) (36)

The difference in parameters (and the degrees of freedom of the χ2) is equal to:

df = (llx− 1) · llz ·
(
|ZC |2 + 5|ZC |+ 4− |ZC |2 − 3|ZC |

2

)
= (llx− 1) · llz ·

(
2|ZC |+ 4

2

)
= (llx− 1) · llz · (|ZC |+ 2)

(37)
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ZD ZC

XC YC

(a) H0 model

ZD ZC

XC YC

(b) H1 model

Figure 4: Null hypothesis (left) and alternative (right) models for two continuous variables.

4.3 Asymptotic Degrees of Freedom between Two Continuous Vari-
ables

The H0 model is shown in Figure 4a and the H1 model is shown in Figure 4b.
For the H0 model, the distribution f(YC | ZD,ZC) has a number of free parameters equal to:

llz · (|ZC |+ 2) (38)

For the H1 model, the distribution f(YC | XC ,ZD,ZC) has a number of free parameters equal
to:

llz · (|ZC |+ 3) (39)

The difference in parameters (and the degrees of freedom of the χ2) is equal to:

llz (40)
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